
Sequence-to-Sequence Learning

as Beam-Search Optimization

Sam Wiseman and Alexander M. Rush

Seq2Seq as a General-purpose NLP/Text Generation Tool

Machine Translation ????Luong et al. [2015]

Question Answering ?

Conversation ?

Parsing Vinyals et al. [2015]

Sentence Compression Filippova et al. [2015]

Summarization ?

Caption Generation ?

Video-to-Text ?

Grammar Correction ?

Room for Improvement?

Despite its tremendous success, there are some potential issues with

standard Seq2Seq [Ranzato et al. 2016; Bengio et al. 2015]:

(1) Train/Test mismatch

(2) Seq2Seq models next-words, rather than whole sequences

Goal of the talk: describe a simple variant of Seq2Seq — and

corresponding beam-search training scheme — to address these issues.

Review: Sequence-to-sequence (Seq2Seq) Models

Encoder RNN (red) encodes source into a representation x

Decoder RNN (blue) generates translation word-by-word

Review: Seq2Seq Generation Details

h1 h2 h3 = RNN(w3,h2)

w1 w2 w3

Probability of generating t’th word:

p(wt|w1, . . . , wt−1,x; θ) = softmax(Wout ht−1 + bout)

Review: Train and Test

Train Objective: Given source-target pairs (x, y1:T), minimize NLL of

each word independently, conditioned on gold history y1:t−1

NLL(θ) = −
∑
t

ln p(wt = yt|y1:t−1,x; θ)

Test Objective: Structured prediction

ŷ1:T = arg max
w1:T

∑
t

ln p(wt|w1:t−1,x; θ)

Typical to approximate the arg max with beam-search

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a red

the dog

red blue

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a red dog

the dog dog

red blue cat

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a red dog smells

the dog dog barks

red blue cat walks

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a red dog smells home

the dog dog barks quickly

red blue cat walks straight

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Review: Beam Search at Test Time (K = 3)

a red dog smells home today

the dog dog barks quickly Friday

red blue cat walks straight now

For t= 1 . . . T :

For all k and for all possible output words w:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max

w1:t

s(wt, ŷ
(k)
1:t−1)

Seq2Seq Issues Revisited

Issue #1: Train/Test Mismatch (cf., Ranzato et al. [2016])

NLL(θ) = −
∑
t

ln p(wt = yt|y1:t−1,x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates (sub)sequence-level costs

Seq2Seq Issues Revisited

Issue #1: Train/Test Mismatch (cf., Ranzato et al. [2016])

NLL(θ) = −
∑
t

ln p(wt = yt|y1:t−1,x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates (sub)sequence-level costs

Seq2Seq Issues Revisited

Issue #1: Train/Test Mismatch (cf., Ranzato et al. [2016])

NLL(θ) = −
∑
t

ln p(wt = yt|y1:t−1,x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates (sub)sequence-level costs

Seq2Seq Issues Revisited

Issue #1: Train/Test Mismatch (cf., Ranzato et al. [2016])

NLL(θ) = −
∑
t

ln p(wt = yt|y1:t−1,x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates (sub)sequence-level costs

Idea #1: Train with Beam Search

Replace NLL with loss that penalizes search-error:

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

s(ŷ
(k)
t , ŷ

(k)
1:t−1) is the score of history (ŷ

(k)
t , ŷ

(k)
1:t−1)

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

Idea #1: Train with Beam Search

Replace NLL with loss that penalizes search-error:

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

s(ŷ
(k)
t , ŷ

(k)
1:t−1) is the score of history (ŷ

(k)
t , ŷ

(k)
1:t−1)

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

Idea #1: Train with Beam Search

Replace NLL with loss that penalizes search-error:

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

s(ŷ
(k)
t , ŷ

(k)
1:t−1) is the score of history (ŷ

(k)
t , ŷ

(k)
1:t−1)

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

Idea #1: Train with Beam Search

Replace NLL with loss that penalizes search-error:

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

s(ŷ
(k)
t , ŷ

(k)
1:t−1) is the score of history (ŷ

(k)
t , ŷ

(k)
1:t−1)

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

Seq2Seq Issues Revisited

Issue #2: Seq2Seq models next-word probabilities:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” [Lafferty et al. 2001]

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

Seq2Seq Issues Revisited

Issue #2: Seq2Seq models next-word probabilities:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” [Lafferty et al. 2001]

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

Seq2Seq Issues Revisited

Issue #2: Seq2Seq models next-word probabilities:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” [Lafferty et al. 2001]

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

Seq2Seq Issues Revisited

Issue #2: Seq2Seq models next-word probabilities:

s(wt =w, ŷ
(k)
1:t−1)← ln p(ŷ

(k)
1:t−1|x) + ln p(wt =w|ŷ(k)1:t−1,x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” [Lafferty et al. 2001]

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = ln p(ŷ

(k)
1:t−1|x) + ln softmax(Wout h

(k)
t−1 + bout)

Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = ln p(ŷ

(k)
1:t−1|x) + ln softmax(Wout h

(k)
t−1 + bout)

= Wout h
(k)
t−1 + bout

Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = ln p(ŷ

(k)
1:t−1|x) + ln softmax(Wout h

(k)
t−1 + bout)

= Wout h
(k)
t−1 + bout

Can set s(w, ŷ
(k)
1:t−1) =−∞ if (w, ŷ

(k)
1:t−1) violates a hard constraint

Computing Gradients of the Loss (K = 3)

a

the

red

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Computing Gradients of the Loss (K = 3)

a red

the dog

red blue

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Computing Gradients of the Loss (K = 3)

a red dog

the dog dog

red blue cat

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Computing Gradients of the Loss (K = 3)

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Computing Gradients of the Loss (K = 3)

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Need to BPTT for both y1:t and ŷ
(K)
1:t , which is O(T)

Worst case: violation at each t gives O(T 2) backward pass

Idea: use LaSO [Daumé III and Marcu 2005] beam-update

Computing Gradients of the Loss (K = 3)

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Need to BPTT for both y1:t and ŷ
(K)
1:t , which is O(T)

Worst case: violation at each t gives O(T 2) backward pass

Idea: use LaSO [Daumé III and Marcu 2005] beam-update

Computing Gradients of the Loss (K = 3)

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Need to BPTT for both y1:t and ŷ
(K)
1:t , which is O(T)

Worst case: violation at each t gives O(T 2) backward pass

Idea: use LaSO [Daumé III and Marcu 2005] beam-update

Computing Gradients of the Loss (K = 3)

a red dog smells home

the dog dog barks quickly

red blue cat barks straight

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO [Daumé III and Marcu 2005]:

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Computing Gradients of the Loss (K = 3)

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO [Daumé III and Marcu 2005]:

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Backpropagation over Structure

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home now

Margin gradients are sparse, only violating sequences get updates.

Backprop only requires 2x time as standard methods.

(Recent) Related Work and Discussion

Recent approaches to Exposure Bias, Label Bias:

Data as Demonstrator, Scheduled Sampling [?Bengio et al. 2015]

Globally Normalized Transition-Based Networks [?]

RL-based approaches

MIXER [Ranzato et al. 2016]

Actor-Critic [?]

Training with beam-search attempts to offer similar benefits

Uses fact that we typically have gold prefixes in supervised

text-generation to avoid RL

Experiments

Experiments run on three Seq2Seq baseline tasks:

Word Ordering, Dependency Parsing, Machine Translation

We compare with Yoon Kim’s implementation1 of the Seq2Seq

architecture of ?.

Uses LSTM encoders and decoders, attention, input feeding

All models trained with Adagrad [Duchi et al. 2011]

Pre-trained with NLL; K increased gradually

“BSO” uses unconstrained search; “ConBSO” uses constraints

1https://github.com/harvardnlp/seq2seq-attn

https://github.com/harvardnlp/seq2seq-attn

Word Ordering Experiments

Word Ordering (BLEU)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 25.2 29.8 31.0

BSO 28.0 33.2 34.3

ConBSO 28.6 34.3 34.5

Map shuffled sentence to correctly ordered sentence

Same setup as Liu et al. [2015]

BSO models trained with beam of size 6

Word Ordering Experiments

Word Ordering (BLEU)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 25.2 29.8 31.0

BSO 28.0 33.2 34.3

ConBSO 28.6 34.3 34.5

Map shuffled sentence to correctly ordered sentence

Same setup as Liu et al. [2015]

BSO models trained with beam of size 6

Word Ordering Experiments

Word Ordering (BLEU)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 25.2 29.8 31.0

BSO 28.0 33.2 34.3

ConBSO 28.6 34.3 34.5

Map shuffled sentence to correctly ordered sentence

Same setup as Liu et al. [2015]

BSO models trained with beam of size 6

Dependency Parsing Experiments

Source: Ms. Haag plays Elianti .

Target: Ms. Haag @L NN plays @L NSUBJ Elianti @R DOBJ . @R PUNCT

Dependency Parsing (UAS/LAS)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 87.33/82.26 88.53/84.16 88.66/84.33

BSO 86.91/82.11 91.00/87.18 91.17/87.41

ConBSO 85.11/79.32 91.25/86.92 91.57/87.26

BSO models trained with beam of size 6

Same setup and evaluation as Chen and Manning [2014]

Certainly not SOA, but reasonable for word-only, left-to-right model

Machine Translation: Impact of Non-0/1 ∆

Machine Translation (BLEU)

Kte = 1 Kte = 5 Kte = 10

∆(ŷ
(k)
1:t) =1{margin violation} 25.73 28.21 27.43

∆(ŷ
(k)
1:t) = 1−SentBLEU(ŷ

(K)
r+1:t, yr+1:t) 25.99 28.45 27.58

IWSLT 2014, DE-EN, development set

BSO models trained with beam of size 6

Nothing to write home about, but nice that we can tune to metrics

Machine Translation Experiments

Machine Translation (BLEU)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 22.53 24.03 23.87

BSO 23.83 26.36 25.48

NLL 17.74 20.10 20.28

DAD [?] 20.12 22.25 22.40

MIXER/RL [Ranzato et al. 2016] 20.73 21.81 21.83

IWSLT 2014, DE-EN

BSO models trained with beam of size 6

∆(ŷ
(k)
1:t) = 1−SentBLEU(ŷ

(K)
r+1:t, yr+1:t)

Results in bottom sub-table from Ranzato et al. [2016]

Note similar improvements to MIXER

Machine Translation Experiments

Machine Translation (BLEU)

Kte = 1 Kte = 5 Kte = 10

Seq2Seq 22.53 24.03 23.87

BSO 23.83 26.36 25.48

NLL 17.74 20.10 20.28

DAD [?] 20.12 22.25 22.40

MIXER/RL [Ranzato et al. 2016] 20.73 21.81 21.83

IWSLT 2014, DE-EN

BSO models trained with beam of size 6

∆(ŷ
(k)
1:t) = 1−SentBLEU(ŷ

(K)
r+1:t, yr+1:t)

Results in bottom sub-table from Ranzato et al. [2016]

Note similar improvements to MIXER

Conclusion

Introduced a variant of Seq2Seq and training procedure that:

Attempts to mitigate Label Bias and Exposure Bias

Allows tuning to test-time metrics

Allows training with hard constraints

Doesn’t require RL

N.B. Backprop through search is a thing now/again:

One piece of the CCG parsing approach of Lee et al. (2016), an

EMNLP 2016 Best Paper!

Thanks!

Training with Different Beam Sizes

Word Ordering Beam Size (BLEU)

Kte = 1 Kte = 5 Kte = 10

Ktr = 2 30.59 31.23 30.26

Ktr = 6 28.20 34.22 34.67

Ktr = 11 26.88 34.42 34.88

ConBSO model, development set results

Pseudocode

1: procedure BSO(x,Ktr, succ)

2: Init empty storage ŷ1:T and ĥ1:T ; init S1

3: r ← 0; violations← {0}
4: for t = 1, . . . , T do . Forward

5: K=Ktr if t 6=T else argmax
k:ŷ

(k)
1:t 6=y1:t

f(ŷ
(k)
t , ĥ

(k)

t−1)

6: if f(yt,ht−1) < f(ŷ
(K)
t , ĥ

(K)
t−1) + 1 then

7: ĥr:t−1 ← ĥ
(K)
r:t−1

8: ŷr+1:t ← ŷ
(K)
r+1:t

9: Add t to violations; r ← t

10: St+1 ← topK(succ(y1:t))

11: else

12: St+1 ← topK(
⋃K

k=1 succ(ŷ
(k)
1:t))

13: grad hT ← 0; grad ĥT ← 0

14: for t = T − 1, . . . , 1 do . Backward

15: grad ht←BRNN(∇htLt+1, grad ht+1)

16: grad ĥt←BRNN(∇
ĥt
Lt+1, grad ĥt+1)

17: if t− 1 ∈ violations then

18: grad ht ← grad ht + grad ĥt

19: grad ĥt ← 0

Backpropagation over Structure

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home today

Margin gradients are sparse, only violating sequences get updates.

Backprop only requires 2x time as standard methods.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer.

Scheduled sampling for sequence prediction with recurrent neural

networks. In Advances in Neural Information Processing Systems,

pages 1171–1179, 2015.

Danqi Chen and Christopher D Manning. A fast and accurate

dependency parser using neural networks. In EMNLP, pages 740–750,

2014.

Hal Daumé III and Daniel Marcu. Learning as search optimization:

approximate large margin methods for structured prediction. In

Proceedings of the Twenty-Second International Conference on

Machine Learning (ICML 2005), pages 169–176, 2005.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient

Methods for Online Learning and Stochastic Optimization. The

Journal of Machine Learning Research, 12:2121–2159, 2011.

Katja Filippova, Enrique Alfonseca, Carlos A Colmenares, Lukasz

Kaiser, and Oriol Vinyals. Sentence compression by deletion with

lstms. In Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, pages 360–368, 2015.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

Conditional random fields: Probabilistic models for segmenting and

labeling sequence data. In Proceedings of the Eighteenth

International Conference on Machine Learning (ICML 2001), pages

282–289, 2001.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin. Transition-based

syntactic linearization. In Proceedings of NAACL, 2015.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective

approaches to attention-based neural machine translation. In

Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2015, pages 1412–1421, 2015.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech

Zaremba. Sequence level training with recurrent neural networks.

ICLR, 2016.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever,

and Geoffrey Hinton. Grammar as a foreign language. In Advances in

Neural Information Processing Systems, pages 2755–2763, 2015.

